### Resource Centre Mathematics

Resource Centre Mathematics Mathematics worksheet, mathematics basic points and formulas, mathematics lesson plan, mathematics multiple choice questions Workplace Dashboard CBSE Syllabus For Session 2023-24 For  :   Classes IX & X    |   Classes XI & XII Watch Videos on Maths Solutions CLASS IX MATHEMATICS FORMULAS &  BASIC CONCEPTS

### Inverse Trigonometric Functions Chapter 2 Class 12

INVERSE   TRIGONOMETRIC   FUNCTIONS
Maths formulas based on Inverse trigonometric functions chapter 2 class 12, useful and important maths formulas on Inverse Trigonometric Functions Note: Click here to open the Assignment on Inverse Trigonometric Functions Chapter 2 Class 12

Before we start the Inverse Trigonometric functions we should know the trigonometric functions class 11 chapter 3. First of all students should learn all the formulas of trigonometric functions then start this chapter.

Inverse Trigonometric Functions
CBSE Syllabus For Inverse Trigonometric Functions Chapter 2 Class XII

 Definition, range, domain, principal value branch, Graphs of inverse trigonometric functions, Elementary Properties of Inverse Trigonometric Functions

1.) In this section we discuss about the principal value
2.) Domain, and range of Inverse Trigonometric Functions
3.) Properties of Inverse Trigonometric Functions.
4.) Graph of Inverse of Trigonometric Functions.
*****************************************************************

Simple meanings of Inverse of a Function

sinx is a function and sin-1x  is an angle

 Functions Domain  (Value of x) Range (Value of y) Principal Value Branch [-1,1] [-1,1] R R R-(-1,1) R-(-1,1)

 Functions Principal Value Branch

******************************

Important Note:

Principal Value:-

The value of the inverse trigonometric functions which lies in its principal value branch is called its Principal Value.

Inverse Trigonometric Functions with Negative angles

Properties of inverse trigonometric functions:-

**********************************

**********************************

Other Important Results

SUBSTITUTION PROPERTIES :-

For a2 + b2, substitution is x = atan θ or x = acot θ

For a2 - b2, substitution is x = asin θ or x = acot θ

For x2 - a2, substitution is x = asec θ or x = acosec θ

the substitution is x = acos2θ

the substitution is x2 = a2cos2θ

*********************************

Chapter 2 Miscellaneous Exercise Q 14

Prove that:

Solution

********************************

Reason:  tan 0 = 0 and tan π = 0