Posts

Showing posts from August, 2020

Featured Posts

Math Assignment Class VIII | Square & Square Root

Image
  Math Assignment  Class VIII | Square & Square Root Download or Print free  assignment with answer key  for   Class  8 Squares and  Square Roots.   Important and extra questions that cover all topics of square and square root and is useful and helpful for the students. Math Assignment  Class VIII | Square & Square Root LEVEL -1

Math Assignment Class XII Ch-5 | Derivatives

Image
Math Assignment Class XII Chapter 5 Derivatives   Question 1 Use chain rule to find the derivative of \[y=\left ( \frac{2x-1}{2x+1} \right )^{2} \;\;\; Ans.1: \frac{8(2x-1)}{(2x+1)^{3}}\] Question 2 .  Differentiate the following w.r.t. x \[y=log_{10}x+ log_{x}10+log_{x}x+ log_{10}10 \] Answer 2 \[ \frac{dy}{dx}=\frac{1}{xlog10}-\frac{log10}{x(logx)^{2}} \] Hint for the solution: \[\frac{logx}{log10}+\frac{log10}{logx}+\frac{logx}{logx}+\frac{log10}{log10} \]\[=\frac{logx}{log10}+\frac{log10}{logx}+1+1\] Now differentiating w. r. t. x and taking log10 as constant. Question 3 . Differentiate the following w. r. t. x at x = 1\[y=e^{x(1+logx)}\; \; \; \; \; \; \; \;........\: \: Ans.[2e]\] Question 4 . \[ If\: \frac{x}{x-y}=log\frac{a}{x-y},\: then\: prove\: that\: \frac{dy}{dx}=\frac{2y-x}{y}\] Question 5 : Differentiate log(x  e x )  w. r. t.   xlogx.  Answer 5: \[ \frac{1+x}{x(1+logx)}\] Question 6 : Differentiate x 2 w. r. t. x 3 .        ...........    Ans:  2/3x. Question 7 : \[

Application of Integrals Chapter 8 Class 12

Image
Application of Integrals  Class 12 Chapter 8 Method of finding the area under the curve, explanation with different examples Introduction: In geometry, we have learnt formulas to calculate areas of various geometrical figures including triangles, rectangles, trapezium and circles. However they are inadequate for calculating the areas enclosed by curves. Now we shall study a specific application of integrals to find the area under simple curves, area between lines and arcs of circles, parabola and ellipses. Method of taking the limits: If limit is taken on the x-axis, then find the value of y in terms of x. If   limit is taken on the y- axis, then find the value of x in terms of y. Algorithm First of all find the limits on the x-axis or on the y-axis. If limit is on the x-axis, then find the value of y in terms of x. If limit is on the y-axis, then find the value of x in terms of y. Find the area under the curve by integrating the given function in the respective lim

Breaking News

Popular Post on this Blog

Lesson Plan Maths Class 10 | For Mathematics Teacher

Lesson Plan Math Class 10 (Ch-1) | Real Numbers

Lesson Plan Maths Class XII | For Maths Teacher

SUBSCRIBE FOR NEW POSTS

Followers