Mathematics Assignments | PDF | 8 to 12

PDF Files of Mathematics Assignments From VIII Standard to XII Standard PDF of mathematics Assignments for the students from VIII standard to XII standard.These assignments are strictly according to the CBSE and DAV Board Final question Papers

NCERT Sol Maths Class XII Ch-3 | Matrices

Solution of Important Question of NCERT Book
Class XII Chapter 3 Matrices
Get Free NCERT Solutions for Class 12 Maths Chapter 3 Matrices. Solution of important questions of NCERT book solved by Expert Teachers as per NCERT (CBSE) Book guidelines.

NCERT Exercise 3.2

Q.18: If I is an identity matrix of order 2 x 2 then show that
$I+A=I-A\begin{bmatrix} cos\alpha &-sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}\; \; where$
$A=\begin{bmatrix} 0 &-tan\frac{\alpha }{2} \\ tan\frac{\alpha }{2}& 0 \end{bmatrix}$
Solution
$Let\; \; tan\frac{\alpha }{2}=t$$Then\; \; A=\begin{bmatrix} 0 &-t \\ t&0 \end{bmatrix}$
$LHS= I+A=\begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}+\begin{bmatrix} 0 &-t \\ t&0 \end{bmatrix}=\begin{bmatrix} 1 &-t \\ t & 1 \end{bmatrix}$
$Now:\; \; cos\alpha =\frac{1-tan^{2}\frac{\alpha }{2}}{1+tan^{2}\frac{\alpha }{2}}=\frac{1-t^{2}}{1+t^{2}}\;\; and$
$sin\alpha =\frac{2tan^{2}\frac{\alpha }{2}}{1+tan^{2}\frac{\alpha }{2}}=\frac{2t^{2}}{1+t^{2}}$
$\begin{bmatrix} cos\alpha &-sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}=\frac{1}{1+t^{2}}\begin{bmatrix} 1-t^{2} & -2t\\ 2t& 1-t^{2} \end{bmatrix}$
$RHS=(I-A)\begin{bmatrix} cos\alpha &-sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}$
$=\left (\begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}-\begin{bmatrix} 0 &-t \\ t & 0 \end{bmatrix} \right )\frac{1}{1+t^{2}}\begin{bmatrix} 1-t^{2}&-2t \\ 2t & 1-t^{2} \end{bmatrix}$
$=\frac{1}{1+t^{2}}\begin{bmatrix} 1&t \\ -t & 1 \end{bmatrix}\begin{bmatrix} 1-t^{2} & -2t\\ 2t& 1-t^{2} \end{bmatrix}$
$=\frac{1}{1+t^{2}}\begin{bmatrix} 1-t^{2}+2t^{2}&-2t+t-t^{3} \\ -t+t^{3}+2t & 2t^{2}+1-t^{2} \end{bmatrix}$
$=\frac{1}{1+t^{2}}\begin{bmatrix} 1+t^{2}&-t-t^{3} \\ t+t^{3} & t^{2}+1 \end{bmatrix}$
$=\frac{1}{1+t^{2}}\begin{bmatrix} 1+t^{2}&-t(1+t^{2}) \\ t(1+t^{2}) & (1+t^{2}) \end{bmatrix}$
$=\begin{bmatrix} 1 &-t \\ t& 1 \end{bmatrix}=LHS$

NCERT  Exercise 3.4

Q 15. Find inverse of A by using elementary operations where $A=\begin{bmatrix} 2 &-3 &3 \\ 2& 2 &3 \\ 3 &-2 & 2 \end{bmatrix}$

Solution: We solve this question by using elementary row operations
For applying elementary row operation we have  A = IA $\begin{bmatrix} 2 &-3 &3 \\ 2& 2 &3 \\ 3 &-2 & 2 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0& 0 & 1 \end{bmatrix}A$
$Operating:\; \; R_{1}\rightarrow 2R_{1}-R_{3}$
$\begin{bmatrix} 1 &-4 &4 \\ 2& 2 &3 \\ 3 &-2 & 2 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ 0& 1 & 0\\ 0& 0 & 1 \end{bmatrix}A$
$Operating:\; \; R_{2}\rightarrow R_{2}-2R_{1}\; \\ Operating:\; \; R_{3}\rightarrow R_{3}-3R_{1}$
$\begin{bmatrix} 1 &-4 &4 \\ 0& 10 &-5 \\ 0 &10 & -10 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -4& 1 & 2\\ -6& 0 & 4 \end{bmatrix}A$
$Operating:\; \; R_{3}\rightarrow R_{3}-R_{2}$
$\begin{bmatrix} 1 &-4 &4 \\ 0& 10 &-5 \\ 0 &0 & -5 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -4& 1 & 2\\ -2& -1 & 2 \end{bmatrix}A$
$Operating:\; \; R_{2}\rightarrow R_{2}-R_{3}$
$\begin{bmatrix} 1 &-4 &4 \\ 0& 10 &0 \\ 0 &0 & -5 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -2& 2 & 0\\ -2& -1 & 2 \end{bmatrix}A$
$Operating:\; \; R_{2}\rightarrow \frac{1}{10}R_{2}\\Operating:\; \; R_{3}\rightarrow \frac{-1}{5}R_{3}$
$\begin{bmatrix} 1 &-4 &4 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}A$
$Operating:\; \; R_{1}\rightarrow R_{1}+4R_{2}$
$\begin{bmatrix} 1 &0 &4 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} 6/5 &4/5 &-1 \\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}A$
$Operating:\; \; R_{1}\rightarrow R_{1}-4R_{3}$
$\begin{bmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} -2/5 &0 &3 /5\\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}A$
$A^{-1}I=A^{-1}=\begin{bmatrix} -2/5 &0 &3 /5\\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}$
Q 16. Find inverse of A by using elementary operations where $A=\begin{bmatrix} 1 &3 &-2 \\ -3& 0 &-5 \\ 2 &5 & 0 \end{bmatrix}$
Solution: We solve this question by using elementary row operations
For applying elementary row operation we have  A = IA $\begin{bmatrix} 1 &3 &-2 \\ -3& 0 &-5 \\ 2 &5 & 0 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0& 0 & 1 \end{bmatrix}A$
$Operating:\; \; R_{2}\rightarrow R_{2}+3R_{1}\\Operating:\; \; R_{3}\rightarrow R_{3}-2R_{1}$
$\begin{bmatrix} 1 &3 &-2 \\ 0& 9 &-11 \\ 0 &-1 & 4 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 3& 1 & 0\\ -2& 0 & 1 \end{bmatrix}A$
$Operating:\; \; R_{1}\rightarrow R_{1}+3R_{3}\\Operating:\; \; R_{2}\rightarrow R_{2}+8R_{3}$
$\begin{bmatrix} 1 &0 &10 \\ 0& 1 &21 \\ 0 &-1 & 4 \end{bmatrix}=\begin{bmatrix} -5 &0 &3 \\ -13& 1 & 8\\ -2& 0 & 1 \end{bmatrix}A$
$Operating:\; \; R_{3}\rightarrow R_{3}+R_{2}$
$\begin{bmatrix} 1 &0 &10 \\ 0& 1 &21 \\ 0 &0 & 25 \end{bmatrix}=\begin{bmatrix} -5 &0 &3 \\ -13& 1 & 8\\ -15& 1 & 9 \end{bmatrix}A$
$Operating:\; \; R_{3}\rightarrow \frac{1}{25}R_{3}$
$\begin{bmatrix} 1 &0 &10 \\ 0& 1 &21 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} -5 &0 &3 \\ -13& 1 & 8\\ -3/5& 1/25 & 9/25 \end{bmatrix}A$
$Operating:\; \; R_{1}\rightarrow R_{1}-10R_{3}\\Operating:\; \; R_{2}\rightarrow R_{2}-21R_{3}$
$\begin{bmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} 1 &-2/5 &-3/5 \\ -2/5& 4/25 & 11/25\\ -3/5& 1/25 & 9/25 \end{bmatrix}A$
$A^{-1}I=A^{-1}=\begin{bmatrix} 1 &-2/5 &-3/5 \\ -2/5& 4/25 & 11/25\\ -3/5& 1/25 & 9/25 \end{bmatrix}$
Q 17. Find inverse of matrix A by using elementary operations where $A=\begin{bmatrix} 2 &0 &-1 \\ 5 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}$

Solution: We solve this question by using elementary row operations
For applying elementary row operation we have  A = IA $\begin{bmatrix} 2 &0 &-1 \\ 5 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{bmatrix}A$
$R_{1}\rightarrow 3R_{1}-R_{2}$
$\begin{bmatrix} 1 &-1 &-3 \\ 5 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{bmatrix}A$
$R_{2}\rightarrow R_{2}-5R_{1}$
$\begin{bmatrix} 1 &-1 &-3 \\ 0 & 6 & 15\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &0 \\ -15 &6 &0 \\ 0 &0 &1 \end{bmatrix}A$
$R_{1}\rightarrow R_{1}+R_{3}$
$\begin{bmatrix} 1 &0 &0 \\ 0 & 6 & 15\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &0 \\ 0 &0 &1 \end{bmatrix}A$
$R_{2}\rightarrow R_{2}-5R_{3}$
$\begin{bmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0& 1 &3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15&6 &-5 \\ 0 & 0 & 1 \end{bmatrix}$
$R_{3}\rightarrow R_{3}-R_{2}$
$\begin{bmatrix} 1 &0 &0 \\ 0 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 15 &-6 &6 \end{bmatrix}A$
$R_{3}\rightarrow \frac{1}{3}R_{3}$
$\begin{bmatrix} 1 &0 &0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}A$$A^{-1}I = A^{-1}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}A$