Featured Posts

Common Errors in Secondary Mathematics

Common Errors Committed  by the  Students  in Secondary Mathematics   Errors  that students often make in doing secondary mathematics  during their practice and during the examinations  and their remedial measures are well explained here stp by step.  Some Common Errors in Mathematics

NCERT Sol Maths Class XII Ch-3 | Matrices

Solution of Important Question of NCERT Book
Class XII Chapter 3 Matrices
Get Free NCERT Solutions for Class 12 Maths Chapter 3 Matrices. Solution of important questions of NCERT book solved by Expert Teachers as per NCERT (CBSE) Book guidelines.

NCERT Exercise 3.2

Q.18: If I is an identity matrix of order 2 x 2 then show that 
\[I+A=I-A\begin{bmatrix} cos\alpha &-sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}\; \; where\]
\[A=\begin{bmatrix} 0 &-tan\frac{\alpha }{2} \\ tan\frac{\alpha }{2}& 0 \end{bmatrix}\]
Solution
\[Let\; \; tan\frac{\alpha }{2}=t\]\[Then\; \; A=\begin{bmatrix} 0 &-t \\ t&0 \end{bmatrix}\]
\[LHS= I+A=\begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}+\begin{bmatrix} 0 &-t \\ t&0 \end{bmatrix}=\begin{bmatrix} 1 &-t \\ t & 1 \end{bmatrix}\]
\[Now:\; \; cos\alpha =\frac{1-tan^{2}\frac{\alpha }{2}}{1+tan^{2}\frac{\alpha }{2}}=\frac{1-t^{2}}{1+t^{2}}\;\; and\]
\[sin\alpha =\frac{2tan^{2}\frac{\alpha }{2}}{1+tan^{2}\frac{\alpha }{2}}=\frac{2t^{2}}{1+t^{2}}\]
\[\begin{bmatrix} cos\alpha &-sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}=\frac{1}{1+t^{2}}\begin{bmatrix} 1-t^{2} & -2t\\ 2t& 1-t^{2} \end{bmatrix}\]
\[RHS=(I-A)\begin{bmatrix} cos\alpha &-sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}\]
\[=\left (\begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}-\begin{bmatrix} 0 &-t \\ t & 0 \end{bmatrix} \right )\frac{1}{1+t^{2}}\begin{bmatrix} 1-t^{2}&-2t \\ 2t & 1-t^{2} \end{bmatrix}\]
\[=\frac{1}{1+t^{2}}\begin{bmatrix} 1&t \\ -t & 1 \end{bmatrix}\begin{bmatrix} 1-t^{2} & -2t\\ 2t& 1-t^{2} \end{bmatrix}\]
\[=\frac{1}{1+t^{2}}\begin{bmatrix} 1-t^{2}+2t^{2}&-2t+t-t^{3} \\ -t+t^{3}+2t & 2t^{2}+1-t^{2} \end{bmatrix}\]
\[=\frac{1}{1+t^{2}}\begin{bmatrix} 1+t^{2}&-t-t^{3} \\ t+t^{3} & t^{2}+1 \end{bmatrix}\]
\[=\frac{1}{1+t^{2}}\begin{bmatrix} 1+t^{2}&-t(1+t^{2}) \\ t(1+t^{2}) & (1+t^{2}) \end{bmatrix}\]
\[=\begin{bmatrix} 1 &-t \\ t& 1 \end{bmatrix}=LHS\]

NCERT  Exercise 3.4

Q 15. Find inverse of A by using elementary operations where \[A=\begin{bmatrix} 2 &-3 &3 \\ 2& 2 &3 \\ 3 &-2 & 2 \end{bmatrix}\]

Solution: We solve this question by using elementary row operations
For applying elementary row operation we have  A = IA \[\begin{bmatrix} 2 &-3 &3 \\ 2& 2 &3 \\ 3 &-2 & 2 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0& 0 & 1 \end{bmatrix}A\]
\[Operating:\; \; R_{1}\rightarrow 2R_{1}-R_{3}\]
\[\begin{bmatrix} 1 &-4 &4 \\ 2& 2 &3 \\ 3 &-2 & 2 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ 0& 1 & 0\\ 0& 0 & 1 \end{bmatrix}A\]
\[Operating:\; \; R_{2}\rightarrow R_{2}-2R_{1}\; \\ Operating:\; \; R_{3}\rightarrow R_{3}-3R_{1}\]
\[\begin{bmatrix} 1 &-4 &4 \\ 0& 10 &-5 \\ 0 &10 & -10 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -4& 1 & 2\\ -6& 0 & 4 \end{bmatrix}A\]
\[Operating:\; \; R_{3}\rightarrow R_{3}-R_{2}\]
\[\begin{bmatrix} 1 &-4 &4 \\ 0& 10 &-5 \\ 0 &0 & -5 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -4& 1 & 2\\ -2& -1 & 2 \end{bmatrix}A\]
\[Operating:\; \; R_{2}\rightarrow R_{2}-R_{3}\]
\[\begin{bmatrix} 1 &-4 &4 \\ 0& 10 &0 \\ 0 &0 & -5 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -2& 2 & 0\\ -2& -1 & 2 \end{bmatrix}A\]
\[Operating:\; \; R_{2}\rightarrow \frac{1}{10}R_{2}\\Operating:\; \; R_{3}\rightarrow \frac{-1}{5}R_{3}\]
\[\begin{bmatrix} 1 &-4 &4 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} 2 &0 &-1 \\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}A\]
\[Operating:\; \; R_{1}\rightarrow R_{1}+4R_{2}\]
\[\begin{bmatrix} 1 &0 &4 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} 6/5 &4/5 &-1 \\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}A\]
\[Operating:\; \; R_{1}\rightarrow R_{1}-4R_{3}\]
\[\begin{bmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} -2/5 &0 &3 /5\\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}A\]
\[A^{-1}I=A^{-1}=\begin{bmatrix} -2/5 &0 &3 /5\\ -1/5& 1/5 & 0\\ 2/5& 1/5 & -2/5 \end{bmatrix}\]
Q 16. Find inverse of A by using elementary operations where \[A=\begin{bmatrix} 1 &3 &-2 \\ -3& 0 &-5 \\ 2 &5 & 0 \end{bmatrix}\]
Solution: We solve this question by using elementary row operations
For applying elementary row operation we have  A = IA \[\begin{bmatrix} 1 &3 &-2 \\ -3& 0 &-5 \\ 2 &5 & 0 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0& 0 & 1 \end{bmatrix}A\]
\[Operating:\; \; R_{2}\rightarrow R_{2}+3R_{1}\\Operating:\; \; R_{3}\rightarrow R_{3}-2R_{1}\]
\[\begin{bmatrix} 1 &3 &-2 \\ 0& 9 &-11 \\ 0 &-1 & 4 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 3& 1 & 0\\ -2& 0 & 1 \end{bmatrix}A\]
\[Operating:\; \; R_{1}\rightarrow R_{1}+3R_{3}\\Operating:\; \; R_{2}\rightarrow R_{2}+8R_{3}\]
\[\begin{bmatrix} 1 &0 &10 \\ 0& 1 &21 \\ 0 &-1 & 4 \end{bmatrix}=\begin{bmatrix} -5 &0 &3 \\ -13& 1 & 8\\ -2& 0 & 1 \end{bmatrix}A\]
\[Operating:\; \; R_{3}\rightarrow R_{3}+R_{2}\]
\[\begin{bmatrix} 1 &0 &10 \\ 0& 1 &21 \\ 0 &0 & 25 \end{bmatrix}=\begin{bmatrix} -5 &0 &3 \\ -13& 1 & 8\\ -15& 1 & 9 \end{bmatrix}A\]
\[Operating:\; \; R_{3}\rightarrow \frac{1}{25}R_{3}\]
\[\begin{bmatrix} 1 &0 &10 \\ 0& 1 &21 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} -5 &0 &3 \\ -13& 1 & 8\\ -3/5& 1/25 & 9/25 \end{bmatrix}A\]
\[Operating:\; \; R_{1}\rightarrow R_{1}-10R_{3}\\Operating:\; \; R_{2}\rightarrow R_{2}-21R_{3}\]
\[\begin{bmatrix} 1 &0 &0 \\ 0& 1 &0 \\ 0 &0 & 1 \end{bmatrix}=\begin{bmatrix} 1 &-2/5 &-3/5 \\ -2/5& 4/25 & 11/25\\ -3/5& 1/25 & 9/25 \end{bmatrix}A\]
\[A^{-1}I=A^{-1}=\begin{bmatrix} 1 &-2/5 &-3/5 \\ -2/5& 4/25 & 11/25\\ -3/5& 1/25 & 9/25 \end{bmatrix}\]
Q 17. Find inverse of matrix A by using elementary operations where \[A=\begin{bmatrix} 2 &0 &-1 \\ 5 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}\]

Solution: We solve this question by using elementary row operations
For applying elementary row operation we have  A = IA \[\begin{bmatrix} 2 &0 &-1 \\ 5 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{bmatrix}A\]
\[R_{1}\rightarrow 3R_{1}-R_{2}\]
\[\begin{bmatrix} 1 &-1 &-3 \\ 5 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{bmatrix}A\]
\[R_{2}\rightarrow R_{2}-5R_{1}\]
\[\begin{bmatrix} 1 &-1 &-3 \\ 0 & 6 & 15\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &0 \\ -15 &6 &0 \\ 0 &0 &1 \end{bmatrix}A\]
\[R_{1}\rightarrow R_{1}+R_{3}\]
\[\begin{bmatrix} 1 &0 &0 \\ 0 & 6 & 15\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &0 \\ 0 &0 &1 \end{bmatrix}A\]
\[R_{2}\rightarrow R_{2}-5R_{3}\]
\[\begin{bmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0& 1 &3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15&6 &-5 \\ 0 & 0 & 1 \end{bmatrix}\]
\[R_{3}\rightarrow R_{3}-R_{2}\]
\[\begin{bmatrix} 1 &0 &0 \\ 0 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 15 &-6 &6 \end{bmatrix}A\]
\[R_{3}\rightarrow \frac{1}{3}R_{3}\]
\[\begin{bmatrix} 1 &0 &0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}A\]\[A^{-1}I = A^{-1}=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}A\]



THANKS FOR YOUR VISIT
PLEASE COMMENT BELOW

Comments

Breaking News

Popular Post on this Blog

Theorems on Quadrilaterals Ch-8 Class-IX

Lesson Plan Maths Class 10 | For Mathematics Teacher

Lesson Plan Math Class X (Ch-13) | Surface Area and Volume

SUBSCRIBE FOR NEW POSTS

Followers