Math Assignment Class XI | Chapter 13 | Limits
Math Assignment Class XI Chapter 13 Limits and derivatives, Extra questions on Limits strictly according to the CBSE & DAV Board, Important questions on limits.
MATHS ASSIGNMENT ON LIMIT
Evaluate the limits: 
Ans: -1/4
Question 2 :
Evaluate the limits: 
Ans: - 1/2
Question 3:
Evaluate the limits 
Ans: -1
Question 4 :
Evaluate the limits 
Ans: 0
Question 5:
Evaluate the limits 
Ans: 4
Question 6 :
Evaluate the limits 
Ans: 9
Question 7 :
If f(x) =
,%20x%3E%200\end{matrix}\right.)
then find
)
Ans: 2
Solution Hint: Find LHL and RHL
Question 8:
Evaluate the limits: }{x})
Ans: 3
Solution Hint:
Use formula:
}{x}=1)
Question 9 :
If 
, then find the value of K
Ans: 3/7
Question 10 :
Evaluate the limits: 
Ans: 9/2
Question 11 :
If

then find the value of k
Ans: 8/3
Question 12 :
Evaluate the limits: 
Ans: 10
Question 13 :
Evaluate the limits: 
Ans: 8
Question 14 :
Evaluate the limits: ^{18}}{(x^{3}-8x^{2}+16x)^{9}})
Ans: ^{18})
Question 15 :
Evaluate the limits: 
Ans: 1/2
Question 16 :
Evaluate the limits: 
Ans: 1/2
Question 17 :
Evaluate the limits: 
Ans: 3/16
Question 18 :
Evaluate the limits 
Ans: 3/4
Question 19 :
Evaluate the limits 
Ans: 1/2
Solution Hint:
Rationalizing the numerator.
Simplify and then putting the limit.
Question 20 
Ans: 4/3
Question 21
Evaluate the limits: 
Ans: 1/2
Question 22
Evaluate the limits: ^{3}})
Ans: - 4
Solution Hint
Use Sin3x = 3sinx – 4sin3x,
putting x = Ï€+h, as x→ Ï€, then h→0
Question 23
Evaluate the limits: })
Ans: 2/5
Solution Hint:
= })
=
= 2/5
Question 24
Evaluate the limits: 
Ans: 1
Question 25
Evaluate the limits: 
Ans: - √2
Solution Hint:
= }{x-\frac{\pi%20}{4}})
= }{x-\frac{\pi%20}{4}})
=
}{x-\frac{\pi%20}{4}})
=
}{x-\frac{\pi%20}{4}})
=

=

Question 26
Evaluate the limits: 
Ans: 2
Solution Hint:
=
}{x-\frac{\pi%20}{6}}%20\right%20])
=
}{x-\frac{\pi%20}{6}}%20\right%20])
=
}{x-\frac{\pi%20}{6}}%20\right%20])
=2 x 1 = 2
Question 27
Evaluate the limits: 
Ans: Log5.Log2
Solution Hint:
= 
= -1(2^{x}-1)}{x^{2}})
= (%202^{x}-1)}{x^{2}})
= \displaystyle%20\lim_{x%20\to%200}\left%20(%20\frac{2^{x}-1}{x}%20\right%20))
= Log5.Log2
Formula used : 
Question 28
Evaluate the limits: 
Ans: -5/16
Solution Hint:
= }{-(1-cos4x)})
= 
= ^{2})
= %20\left%20(%20\frac{sin\frac{x}{2}}{\frac{x}{2}}\times%20\frac{1}{2}%20\right%20)\div%20\left%20(%20\frac{sin2x}{2x}%20\times%202\right%20)^{2})
= )
=

Question 29
Evaluate the limits:
Ans: - 4
Solution Hint
Question 30
Evaluate the limits:
Ans: 2/3
Thanks for Your Visit
Please Comment Below
Comments
Post a Comment