Math Assignment Class VIII | Square & Square Root

Basic concepts, definitions and formulas of mathematics, mathematics assignments for 9th standard to 10+2 standard, maths study material for 8th, 9th, 10th, 11th, 12th classes, Mathematics lesson plan for 10th and 12th standard, Interesting maths riddles and maths magic, Class-wise mathematics study material for students from 9th to 12
Simple explanations and the implementations of logarithmic formulas in solving complicated mathematical problems. Indices, logarithmic formulas and logarithmic tables are explained here
Indices
xm
= x.x.x.x…………….m terms
Here x is
called the base and m is called the index or exponent of x.
Indices is
the plural of index.
\[If\;\; \;
\; x^{2}=a\; \; \; \Rightarrow\; \; \; x=\sqrt{a}\]
\[If\;\; \;
\; x^{3}=a\; \; \; \Rightarrow\; \; \; x= \sqrt[3]{a}\]
\[If\;\; \;
\; x^{4}=a\; \; \; \Rightarrow\; \; \; x= \sqrt[4]{a}\]
\[If\;\; \;
\; x^{5}=a\; \; \; \Rightarrow\; \; \; x= \sqrt[5]{a}\]
\[If\;\; \;
\; x^{100}=a\; \; \; \Rightarrow\; \; \; x= \sqrt[100]{a}\]
\[If\;\; \;
\; x^{n}=a\; \; \; \Rightarrow\; \; \; x= \sqrt[n]{a}\]
Laws of
Indices
\[(i)\; \;
x^{m}\times x^{n}=x^{m+n}\; \; \; (ii)\; \; \; \; \frac{x^{m}}{x^{n}}=x^{m-n}\]
\[(iii)\;
\; (x^{m})^{n}=x^{mn}\; \; \; (iv)\; \; \; \; x^{m}=\frac{1}{x^{-m}}\; \; or\;
\; x^{-m}=\frac{1}{x^{m}}\]
\[(v)\; \;
\; \; (xy)^{m}=x^{m}y^{m}\; \;\: \; (vi)\; \; \; \left ( \frac{x}{y} \right
)^{m}=\frac{x^{m}}{x^{n}}\]
\[(vii)\;
\; \; \; x^{a}=y^{a}\; \;\Rightarrow \: \;x=y,\; \;Provided\; \; a\neq 0\]
\[(vii)\;
\; \; \; x^{m}=x^{n}\; \;\Rightarrow \: \;m=n,\; \;Provided\; \; x\neq \: 0,1\]
Logarithms
Logarithm of a number to a given base is the index or power to which the base must be raised so as to be equal to the given number.
If a x = N (Where a is a positive number ≠1), then x is called the logarithm of N to the base a and is written as x = Loga N.
\[For\; Example:\; \; 5^{3}=125, \Rightarrow 3=Log_{5}125\]
\[ 4^{5}=1024, \Rightarrow 5=Log_{4}1024\]
\[Log1=0,\; \; log10=1, \; \; log100=2,\; \; log1000=3\; \; ....so \; \; on.\]
\[Log_{a}1=\frac{Log1}{Loga}=\frac{0}{Loga}=0\]
\[Log_{a}a=\frac{Loga}{Loga}=1\]
Example: \[If\; \; x = 2^{-\frac{1}{3}log_{2}64},\; \; then\; find\; \; x\]
Solution: \[x = 2^{-\frac{1}{3}log_{2}64}\; \; =2^{log_{2}\left ( 64 \right )^{-1/3}}\]
\[=2^{log_{2}\left ( 4^{3} \right )^{-1/3}}=2^{log_{2}(4)^{-1}}\]
\[=2^{log_{2}(2^{2})^{-1}}=2^{log_{2}(2)^{-2}}=2^{-2log_{2}2}\]
\[=2^{-2\times 1}=2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}\]
Fundamental Properties of Logarithms
Product Formula: \[Log_{a}(lm)=Log_{a}l+Log_{a}m\]
\[Log_{a}(lmn)=Log_{a}\: l+Log_{a}\: m+Log_{a}\: n\]
Quotient Formula: \[Log_{a}(\frac{m}{n})=Log_{a}\: m-Log_{a}\: n\]
Power formula: \[Log_{a}m^{n}=n\: Log_{a}\: m\]
Example: \[Evaluate:\: \: Log_{5}\; \left ( \frac{\sqrt[4]{25}}{625} \right )\]
Solution: \[Log_{5}\; \left ( \frac{\sqrt[4]{25}}{625} \right )=Log_{5}\sqrt[4]{25}-Log_{5}\; 625\]
\[=Log_{5}\; (25)^{1/4}-Log_{5}\; 5^{4}=\frac{1}{4}Log_{5}\; (25)-4Log_{5}5\]
\[=\frac{1}{4}Log_{5}\; (5)^{2}-4\times1 =\frac{1}{4}\times 2\; Log_{5}\; (5)-4\]
\[=\frac{1}{2}\times 1-4=\frac{-7}{2}\]
Natural Logarithms
Find the number of digits in 362
Let x
= 362
Taking log on both side
Log x = Log 362
Log x = 62 Log 3 = 62 X 0.4771 = 29.5802
Characteristic
= 29
Number of digits in 362 = 29 + 1 = 30
Find the position of the first significant figure in 3-65
Let x = 3-65
Log x = Log 3-65 = - 65 X Log 3
= -65 X 0.4771 = -31.0115
Log x = -(31 + 0.0115) = -31 – 0.0115
In order to make Mantissa positive , add and subtract 1
Log x =
- 31 – 1 + 1 -0.0115
= - 32 + 0.9985
Characteristic Value = - 32
So there are 32 – 1= 31 zeroes immediate after
decimal.
So position of the first significant figure
is 31 + 1 = 32
Find the 5th root of 0.003
\[Let\: \: x=\left ( 0.003 \right )^{1/5}\]
\[Logx=Log\left ( 0.003 \right )^{1/5}\]
\[Log x=\frac{1}{5}\; Log \left ( 0.003 \right )\]
\[Log x=\frac{1}{5}\times \overline{3}.4771\: =\: \frac{1}{5}[-3+0.4771]\]
\[Log x=\: \frac{1}{5}[-3-2+2+0.4771]=\: \frac{1}{5}[-5+2.4771]\]
\[Log x=\: \frac{1}{5}\times -5+\frac{1}{5}\times 2.4771 = -1+0.4954 = \overline {1} .4954\]
Taking antilog on both sides we get
\[x=Antilog(\overline{1}.4954)=0.3129\]
Find the value of Log 43 57
\[Let \; \; x = Log_{43}57 = \frac{Log57}{Log43}=\frac{1.7559}{1.6335}\]
\[Log x = Log\left (\frac{1.7559}{1.6335} \right )=Log1.7559-Log1.6335\]
\[Log x = 0.2443-0.2130=0.0312\]
Taking antilog on both sides we get
\[x = Antilog\: (0.0312)=1.074\]
Evaluate the following\[Evaluate\: :\: \sqrt[3]{\frac{(45.4)^{2}}{(3.2)^{2}\times (6.5)^{3}}}\] Solution : \[Let\; \; x=\: \sqrt[3]{\frac{(45.4)^{2}}{(3.2)^{2}\times (6.5)^{3}}}\]
Comments
Post a Comment