Featured Posts

CBSE Assignments class 09 Mathematics

  Mathematics Assignments & Worksheets  For  Class IX Chapter-wise mathematics assignment for class 09. Important and useful extra questions strictly according to the CBSE syllabus and pattern with answer key CBSE Mathematics is a very good platform for the students and is contain the assignments for the students from 9 th  to 12 th  standard.  Here students can find very useful content which is very helpful to handle final examinations effectively.  For better understanding of the topic students should revise NCERT book with all examples and then start solving the chapter-wise assignments.  These assignments cover all the topics and are strictly according to the CBSE syllabus.  With the help of these assignments students can easily achieve the examination level and  can reach at the maximum height. Class 09 Mathematics    Assignment Case Study Based Questions Class IX 

Polynomials basic concepts-cbse mathematics

Polynomial Chapter 2
Different types of polynomials, degree of polynomials, relationship between zeroes and coefficients of quadratic and cubic polynomials, pair of linear equations in two variables, methods of solving pair of linear equations in two variables.


Polynomial:- An algebraic expression in which the exponent of the variable is a whole number is called  a polynomial.
Example : 4x4 - 3x3 + 4x2 - 5x + 2
All exponents of the variable are whole number, so it is a polynomial
Highest exponent = 4,
Degree = 4  
Coefficient of x4 = 4,   Coefficient of x3 = - 3
Coefficient of x2 = 4,   Coefficient of x = - 5
Constant Term = 2

Types of polynomial On the basis of terms:-

Monomial:- Polynomial having one term. Eg  4x2
Binomial:-   Polynomial having two terms. Eg   4x2 + 6x
Trinomial:- Polynomial having three terms. Eg   4x2 + 6x + 5
Quadrinomial:-Polynomial having four terms. Eg   4x3 + 6x2 + 5x + 2

Degree of a Polynomial:
In a polynomial highest exponent of the variable is called its degree.
Example :
Let P(x)= 
2x4 - 3x3 + 4x2 - 2x + 1 is any polynomial
Highest exponent of the variable = 4
So its degree = 4

Types of polynomial  On the basis of degree:-

Constant Polynomial:-
A polynomial of degree zero is called constant polynomial 
For Example:-  3, 5
Linear Polynomial:-
Polynomial of degree one is called linear polynomial. 
For Example:- P(x)=  ax + b
Quadratic Polynomial:-
Polynomial of degree two  is called Quadratic polynomial.  
For Example:-  P(x)= ax2 + bx + c
Cubic Polynomial:-
Polynomial of degree three  is called cubic polynomial.   
For Example:- P(x) = ax3 + bx2 + cx + d
Bi-Quadratic Polynomial:-
Polynomial of degree four  is called linear polynomial. 
For Example:- P(x) = ax4 + bx3 + cx2 + dx + e
Zero polynomial:- 
A polynomial with coefficient zero is called zero polynomial

Note:- Degree of zero polynomial is not defined.

Zeroes of polynomial:- 
Values of x for which the given polynomial become zero are called the zeroes of the polynomial.

Note:- Number of zeroes of a polynomial is equal to the degree of that polynomial.

For Example:- A linear polynomial has one zero,  Quadratic polynomial has two zeroes, Cubic polynomial has three zeroes  and so on.

Difference between Quadratic Polynomial and quadratic equations

Quadratic Polynomial

Quadratic Equation

Quadratic Polynomial can be written as: P(x) = ax2 + bx + cQuadratic Equation can be written as :-  ax2 + bx + c = 0
Solution of quadratic polynomials are called its zeroes.Solution of quadratic equations are called its roots.

Remainder Theorem
If any polynomial P(x) is divided by any polynomial x + 5 (say), then P(- 5) becomes the remainder.
Factor Theorem
If any polynomial P(x) is divided by any polynomial x + 5 (say), and  P(- 5) becomes = 0, then x + 5 is called the factor of P(x)


Operations on Polynomials

Addition of two polynomials

Example:

Add: 2x4 + 3x2 - 4x + 5 and 3x4 - 5x3 + 8x – 7

In place of and  use ‘+’ sign we get

(2x+ 3x2 - 4x + 5) + (3x4 - 5x3 + 8x – 7)

Collect the like terms with same degree

(2x4 + 3x4) + (- 5x3) + (3x2) + (- 4x +8x ) + (5 – 7)

5 x4 - 5x3 + 3x2 + 4x + (-2)

5 x4 - 5x3 + 3x2 + 4x - 2

Subtraction of two polynomials

Example: Subtract :  3x2 + 4x from 5x3 + 2x2 – 1

First write the polynomial after from then ‘_’ sign and then first polynomial

(5x3 + 2x2 – 1) – (3x2 + 4x )

Open the brackets and change the sign of the polynomial which is after the negative sign

5x3 + 2x2 – 1 - 3x2 - 4x

Now collect the like terms and apply the operation according to the sign

5x3 + (2x2 - 3x2) – 4x – 1

5x3 + (- x2) – 4x – 1

5x3 + - x2 – 4x – 1

Multiplication of two polynomials

Example : Multiply  (2x + 3)(7x - 4)

2x(7x - 4) + 3(7x - 4)

14 x2 – 8x + 21x -12

14 x2 + 13x -12

Relationship between zeroes and coefficients of a quadratic polynomial:-

Quadratic polynomial is given by    P(x) = ax2 + bx + c
If α and β are the zeroes of quadratic polynomial then
\[Sum \: of\: zeroes\: (\alpha +\beta )=\frac{-\left ( coefficient\:of\: x \right )}{coefficient\: of\: x^{2}}=\frac{-b}{a}\]
\[Product \: of\: zeroes\: (\alpha \beta )=\frac{constant\: term}{coefficient\: of\: x^{2}}=\frac{c}{a}\]

Relationship between zeroes and coefficients of a Cubic polynomial:-  

Cubic polynomial is given by     P(x) = ax3 + bx2 + cx + d = 0
If α, β and 𝜸 are the zeroes of cubic polynomial then
\[Sum \: of\: zeroes\: (\alpha +\beta+\gamma )=\frac{-\left ( coefficient\:of\:x^{2}\right )}{coefficient\: of\: x^{3}}=\frac{-b}{a}\]
\[Sum\; of\; Product\; of\; zeroes\; taken\; two \: at\: a\: time\:(\alpha \beta+\beta \gamma +\gamma \alpha )=\frac{coefficient\: of\: x}{coefficient \: of\: x^{3}} =\frac{c}{a}\]
\[Product \: of\: zeroes\: (\alpha \beta\gamma )=\frac{constantt\: term}{coefficient \: of\: x^{3}} =\frac{-d}{a}\]
Division Algorithm:-

            Dividend = Divisor x Quotient + Remainder  or
                    p(x) = g(x) x q(x) + r(x)

THANKS FOR YOUR VISIT
PLEASE COMMENT BELOW

Polynomials basic concepts-cbse mathematics

Comments

  1. Very useful and interesting to read and learn. Thank you very much for your efforts.

    ReplyDelete
  2. Very useful information and good work. Thank you so much for your efforts

    ReplyDelete
  3. Excellent

    ReplyDelete
  4. Very useful information sir . Thank you so much sir

    ReplyDelete

Post a Comment


Breaking News

Popular Post on this Blog

Lesson Plan Maths Class 10 | For Mathematics Teacher

Theorems on Quadrilaterals Ch-8 Class-IX

Lesson Plan Math Class X (Ch-13) | Surface Area and Volume

SUBSCRIBE FOR NEW POSTS

Followers