### Common Errors in Secondary Mathematics

Common Errors Committed  by the  Students  in Secondary Mathematics   Errors  that students often make in doing secondary mathematics  during their practice and during the examinations  and their remedial measures are well explained here stp by step.  Some Common Errors in Mathematics

### CBSE Class 10 Maths Formulas Chapter-04 | Quadratic Equations

Quadratic equation Chapter 4 Class 10

Basic concepts on Quadratic Equation class 10, chapter 4,  Nature of roots, Discriminant, Quadratic Formula, method of completing the square. Complete explanation of quadratic equations

An equation whose degree is 2 is called a quadratic equation.
General Quadratic Equation is  ax2 + bx + c = 0
Here "a" is the coefficient of x2 ,
"b" is the coefficient of x and
"c" is the constant term.

Quadratic equations are very similar to the quadratic polynomials. But they are different from each other because of the following reasons.

 Quadratic Equations Quadratic Polynomials General Quadratic Equations is    ax2 + bx + c = 0 General Quadratic Polynomial is  P(x) = ax2 + bx + c Solutions of quadratic equations are called its roots. Solutions of quadratic polynomials are called its zeroes.

ROOTS:-
Solutions of the quadratic equations are called its roots. A quadratic equation have two roots.

RELATION BETWEEN ROOTS AND COEFFICIENTS:-

x2 – (Sum of roots)x + Product of roots = 0

x2 – Sx + P = 0

If D > 0  then  roots are real and unequal or distinct or different)
If D = 0  then  roots are  real and equal
If D < 0  then  roots are  not real

Method of completing the square:-

ax2 + bx + c = 0
Make the coefficient of x2 unity

Bring the constant term to the right hand side.

Completing the square

Taking the square root on both side

Find the value of x

Example
 Find the roots of  5x2 - 6x - 2 = 0 by the method of completing the square Given equation is   5x2 - 6x - 2 = 0 D = b2 - 4ac  ⇒ D = (-6)2  - 4 x 5 x -2 = 36+40 = 76 > 0 ⇒ Roots are real and distinct ⇒ Roots of Q. E. are exists Now we apply method of completing the square as follows Step (1) Make the coefficient of x2 unity ( divide the equation by 5) Step (2) Bring the constant term to the RHS Step (3)   Step (4)  Completing the square and find the square root

Method of solving the Q. E. by using quadratic formula
 Find the roots of 5x2 - 6x - 2 = 0 by the Quadratic Formula Given equation is 5x2 - 6x - 2 = 0 D = b2 - 4ac ⇒ D = (-6)2  - 4 x 5 x -2 = 36 + 40 = 76 > 0 ⇒ Roots are real and distinct ⇒ Roots of Q. E. are exists Now we apply the quadratic formula